Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The peptide (Z)-Pro-Leuol

Fani Fountoulaki et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

electronic papers

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

The peptide (Z)-Pro-Leuol

Fani Fountoulaki,^a Renate Geßmann,^b Hans Brückner^c and Michael Kokkinidis^{b,d}*

^aDepartment of Physics, University of Crete, Vassilika Vouton, 71409 Iraklion, Crete, Greece, ^bInstitute of Molecular Biology and Biotechnology, Foundation of Research and Technology, PO Box 1527, 71110 Iraklion, Crete, Greece, ^cInstitute of Nutritional Sciences, Department of Food Sciences, University of Giessen, Südanlage 6, 35390 Giessen, Germany, and ^dDepartment of Biology, University of Crete, Vassilika Vouton, 71409 Iraklion, Crete, Greece Correspondence e-mail: kokkinid@crystal1.imbb.forth.gr

Received 2 October 2000 Accepted 23 October 2000

Data validation number: IUC0000304

The structure of the synthetic protected dipeptide (*Z*)-Pro-Leuol [systematic name: benzyl 2-(1-hydroxymethyl-3-methylbutylaminocarbonyl)pyrrolidine-1-carboxylate], $C_{19}H_{28}$ - N_2O_4 , was determined by X-ray crystallography. The peptide adopts a novel backbone conformation compared with other longer oligopeptides containing Pro-Leuol.

Comment

The sequence Pro-Leucinol is the C-terminal dipeptide of several naturally occurring peptaibols, *i.e.* peptides containing α -aminoisobutyric acid (Aib) and an alcoholic C-terminus (Brückner & Graf, 1983; Benedetti *et al.*, 1982), among them harzianin (Rebuffat *et al.*, 1994, 1995), hypomuricin (Becker, 1996; Becker *et al.*, 1997) and trichovirin (Kieß & Brückner, 1990; Brückner *et al.*, 1991). The crystal structures of the four, eight and twelve C-terminal residues comprising peptides of trichovirin were solved by our group (Geßmann *et al.*, 1994, 1999). Interestingely, while proline in the longer peptides adopts main-chain torsion angles φ and ψ which lie in the 3₁₀-helical region, proline in the dipeptide adopts a semi-extended conformation with φ and ψ values of -71.3 and 146.1°, respectively. The φ values of Leu in the longer peptides have

been observed as unusually small for the helical region, while the φ value (-77.8°) of Leu in the title compound, (I), lies inside the helical region. The pyrrolidine ring of Pro adopts the C_{γ} -exo (Ashida & Kakudo, 1974) conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.284 Å and $\Phi = 292.98^{\circ}$. In the crystal, the peptides are hydrogen bonded along the [100] direction *via* two hydrogen bonds (see Table 2). In the other directions, these columns of molecules are packed *via* apolar crystal contacts.

Experimental

(Z)-Pro-Leuol was synthezized from commercially available (Z)-L-Pro-OH (from Bachem, Bubendorf, Switzerland) and H-L-Leuol (from Fluka, Buchs, Switzerland) by using WSC (water-soluble carbodiimide) and HOBt (1-hydroxybezotrialole) as coupling reagents. This approach is known to prevent racemization. Further, it is known that C-terminal Pro in peptide coupling does not racemize as no azlactone can be formed on activation. Chiral purity was also confirmed by enantioselective gas chromatography of a total hydrolysate of the dipeptide on a Chirasil-L-Val capillary column according to procedures described previously (Brückner & Jung, 1982). For this reason, the Flack parameter was not refined. The protected dipeptide was crystallized from a hot ethanol-water mixture (60:40). Very few plate-like crystals were obtained and all reached a length of 1 mm. The crystals were fragile and easily damaged. An intact crystal was sealed in a glass capillary for data collection. The collimator used has a diameter of 1 mm.

Cu Ka radiation

reflections

 $\theta = 10.02 - 21.41^{\circ}$ $\mu = 0.682 \text{ mm}^{-1}$

Rod, colourless

 $1.0 \times 0.4 \times 0.2 \ \text{mm}$

T = 293 K

 $R_{\rm int} = 0.069$

 $\theta_{\rm max}=70.02^\circ$

 $h = -6 \rightarrow 7$

 $k = -8 \rightarrow 10$

 $l = -33 \rightarrow 41$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.388 \text{ e} \text{ Å}^{-3}$

(1967)

synthesis

 $\Delta \rho_{\rm min} = -0.489 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: Zachariasen

Extinction coefficient: 4647.9 (18)

Absolute structure: assumed from

5 standard reflections

frequency: 3600 min

intensity decay: 11.2%

Cell parameters from 25

Crystal data

 $C_{19}H_{28}N_2O_4$ $M_r = 348.44$ Orthorhombic, $P2_12_12_1$ a = 6.371 (4) Å b = 8.824 (8) Å c = 34.303 (10) Å V = 1928 (2) Å³ Z = 4 $D_x = 1.200 \text{ Mg m}^{-3}$

Data collection

CAD-4 diffractometer $\omega - \frac{4}{3}\theta$ scans Absorption correction: analytical (*Xtal3.7 ABSORB*; Hall *et al.*, 2000) $T_{min} = 0.736, T_{max} = 0.875$ 4821 measured reflections 2111 independent reflections 1398 reflections with $I > 2.5\sigma(I)$

Refinement

Refinement on F^2 R(F) = 0.067 $wR(F^2) = 0.093$ S = 1.9952049 reflections 227 parameters H-atom parameters constrained $w = 1/\sigma^2(F)$

Table 1

Selected torsion angles (°).

C06-C07-O01-C08	-164.0(4)	C1A-C1B-C1G-C1D	28.3 (7)
C07-O01-C08-N1	-174.0(4)	C1B-C1G-C1D-N1	-29.6(6)
O01-C08-N1-C1A	0.5 (6)	C1A - N1 - C1D - C1G	20.1 (5)
C08-N1-C1A-C1	-71.3 (6)	C1D-N1-C1A-C1B	-3.6(5)
N1 - C1A - C1 - N2	146.1 (4)	N1-C1A-C1B-C1G	-15.1(6)
C1A - C1 - N2 - C2A	171.2 (4)	N2-C2A-C2B-C2G	-177.2(4)
C1 - N2 - C2A - C2	-77.8(5)	C2A-C2B-C2G-C2D1	-179.2(5)
N2 - C2A - C2 - O2	-53.9 (5)	$\mathrm{C}2A\!-\!\mathrm{C}2B\!-\!\mathrm{C}2G\!-\!\mathrm{C}2D2$	58.7 (7)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N2^{i}-H2^{i}\cdots O2\\ O2^{i}-H^{i}\cdots O1\end{array}$	0.92	2.13	3.044 (5)	176
	0.893 (5)	2.053 (5)	2.733 (5)	132.14 (?)

Symmetry code: (i) 1 + x, y, z.

Data were collected from $\theta = 1-70^{\circ}$. Subsequently, 1978 Friedel pairs were measured, from $\theta = 1-49^{\circ}$. All equivalent data were averaged, including the Friedel pairs. H atoms were calculated and a riding model was used during the refinement. The C-terminal H atom was located by difference Fourier syntheses and its displacement parameter was fixed during refinement.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *Xtal3.7 DIFDAT ABSORB ADDREF* (Hall *et al.*, 2000); program(s) used to solve structure: *Xtal3.7 CRISP*; program(s) used to refine structure: *Xtal3.7 CRILSQ*; software used to prepare material for publication: *Xtal3.7 BONDLA CIFIO*.

The authors would like to thank Radoslav Parashkov for assistance in the preparation of the drawings.

References

- Ashida, T. & Kakudo, M. (1974). Bull. Chem. Soc. Jpn, pp. 1129-1133.
- Becker, D. (1996). PhD thesis, Universität Hohenheim, Germany.
- Becker, D., Kieß, M. & Brückner, H. (1997). *Liebigs Ann. Recueil*, pp. 767–772. Benedetti, E., Bavoso, A., Di Blasio, B., Pavone, V., Toniolo, C. & Bonora,
- G. M. (1982). Proc. Natl Acad. Sci. USA, pp. 7951–7954.
- Brückner, H. & Graf, H. (1983). Experientia, 39, 528-530.
- Brückner, H. & Jung, G. (1982). Liebigs Ann. Chem. pp. 1677-1699.
- Brückner, H., Kripp, T. & Kieß, M. (1991). Proceedings of the 21th European Peptide Symposium, pp. 347–349. Leiden, The Netherlands: ESCOM Science.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1367.
- Enraf–Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Geßmann, R., Benos, P. Brückner, H. & Kokkinidis, M. (1999). J. Pept. Sci. 5, 83–95.
- Geßmann, R., Kokkinidis, M. & Brückner, H. (1994). Z. Kristallogr. 212, 819– 825.
- Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (2000) Editors. Xtal3.7 System. University of Western Australia, Australia.
- Kieß, M. & Brückner, H. (1990). Dechema Biotechnol. Conf. 4, 1155-1158.
- Rebuffat, S., Drognat-Landré, P., Goulard, C., Augeven-Bour, I., Auvin, C. & Bodo, B. (1994). *Proceedings of the 24th European Peptide Symposium*, pp. 427–428. Leiden, The Netherlands: ESCOM Science.
- Rebuffat, S., Goulard, C. & Bodo, B. (1995). J. Chem. Soc. Perkin Trans I, pp. 1849–1855.
- Zachariasen, W. H. (1967). Acta Cryst. 23, 558.